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On the mechanism of eutectic structure
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Abstract The criteria for stabilities of eutectics, solid solutions and precipitates are proposed. Based on the
Thomas- Fermi- Dirac model on the boundary conditions, electron densities and chemical potentials should be equal in ei-

ther side of a composite film. The optimum condition for the energy balance and the sizes of films of eutectics is given.
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The phase diagram of a eutectic structure is characterized by the equality of chemical potentials
of three phases (two component phases and one composite phase) . From the angle of first approxima-
tion, neither significant surface tension nor difference of surface energies should exist at the bound-
aries of micro-crystals. A mixture of the three phases in any size of crystallines will be stable. The
sizes of crystals are insignificant for the stability of the structure. In general, however, equilibrium
between two components is possible but not in the composite phase with a mean density. The compos-
ite phase is then either more, or less stable than that of the simple mechanical mixture of the separate
phases. This means .that there exists a large difference in chemical potentials at the interfaces of the
crystals of the three phases, and the mixture of two component phases cannot coexist with the compos-
ite phase. Hence all crystals tend to grow as large as possible until the boundary energies are the
least. However, to a next higher approximation there will be differences in the free energies among the
three phases in a eutectic mixture. Here one has to take account of the surface energies at boundaries
of the crystallines. Although their difference is small, they do affect the structure of the component
phases. At the interface boundary, there are several independent factors controlling the thickness of

each kind of crystallines in contact. They are as follows.

(i) In general the composite phase either stays alone or completely disappears. In the following

we shall only consider the latter case, because the former is the case of simple chemical reaction.

(ii) The difference in electron densities of the crystallines of two contacting components gives
rise to stresses at interface and stress energies in a relatively broad micro-centimeter scale. The energy

increment is positive[” .

(iii) A difference in the chemical potentials of electrons on two sides of the interface will create
a shift of electrons from one side to the other. This will decrease the total energy. The increment is

therefore negative[2 I

(iv) The increment of stress energy in (ii) and decrement of energy by electronic transference in
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(iii) will reach counterbalance to a stable level. This determines the optimum sizes of the two adja-

cent crystals of the two components.

(v) The constituent ratio of the two components can be known from the condition of the phase di-
agram, namely the lever rule, but the actual thickness of the components cannot be determined. The
energy balance results in the stacking-up of alternative layers of two components in definite thickness.

This is exactly the pattern of the eutectic structure.
1 Phase relation of the eutectic

Figure 1 shows the free energy F against concentration of one component for a eutectic. Because
the three phases are all in equilibrium, their tangents are in one line. The equations for equilibrium

Flo) are as follows:
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¢ where ¢; and c; are concentrations of components. Eq.
1) shows that three phases can coexist with equal chemi-
Fig. 1 Phase diagram of a eutectic, the free energy ( ) . ] p o 9 )
versus composition. cal potential . This means that no significant forces exist at
the interfaces and micro-crystalline can exist in all possi-

ble sizes. The quantity of each specimen obeys the lever law

(Ci—cj)Mi = (CM_Cj)Mj’ (2)
where M, = F(c;) - F(cj) » M;= F(ey) - F(cj) and ¢y is the concentration of M component.

Actually, the difference in free energy or chemical potential, though very small, does exist as
mentioned above.

2 Change in free energy at interface due to transference of electrons

The transference of electrons from one side to the other side of the interface results in a decrease
in energy. We first assume that both components are metallic. This change in energy can be computed
by applying the Thomad-Fermi-Dirac (TFD) model. For the other case where one component is
metallic and the other is an insulator, please refer to References [1,2].

Consider plane interface here, and let the origin of the coordinate system be at the interface such
that the positive direction of x axis refers to the direction from the interface to one component, and the
negative one refers to that from the interface to the other component. denote by 7 = 7(x) the change
in density of electrons n(x) at position x, and by ¥V = V(x) the Coulomb potential. Let u be the
difference in chemical potential of an electron at the interface. One can now write down the total
change in free energy ¢ per unit cross section as

€ =J[%A722+ (B +—;—eV— ,u)y]dx, 7 = n- ng,
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where 7 refers to the deviation of densities from that of the ground state, h is the Plank constant, m
the electron mass and e the electron charge. A and B are the first and the second derivatives of total
TFD energy density against electron density n respectively. The factor of 1/2 before the potential en-

ergy term takes account of the fact that each term of n appears twice in the integration.

The potential V(x), together with the boundary conditions at x =0, is given by
AV(x) = - 4y,

x =0, V(+0) = V(-0), (4)
dv dv
E;(+0) = d—x(-o)-

The distribution 7](x) is determined by the variation in Eq. (3) with the aid of Eq. (4).

Ap+ B+ eV -p =0,

1}:—%(B+eV—,u), (5)
A 4ye?
7= 1 9.

The solutions of Eqs. (4) and (5) are

x
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where + and - denote the regions x > 0 and x <0, respectively.

740

The total change in free energy per unit area can now be evaluated and given as
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which is small if the chemical potential and difference (B_ — B, ) are small. That will be true for

the eutectic structure. This requirement is critical in the following sections. We will demonstrate that
eutectics can have two possible stable structures, one of which is formed by stacking alternatively the

thin films of two components.

3 Increase in stress energy at the interface

(1] siresses on both sides

In Fig. 2, A and B are two kinds of specimen of materials. There exist
of the interface between A and B, with opposite sign and magnitude proportional to the difference in
electron densities of the two sides of the interface. The pressure inside a layer will be the superposi-

tion of pressures from both sides of interfaces.

Write down approximately the pressure at distance x on

A B A
the positive side (x >0) as
0 L
\ x o6 = ope P, Ax = L, (8)
I 1 where an exponential is used for the approximation of the

pressure. This is owing to the fact that the stress depresses
Fig. 2 Diagram of the interface. . .. .
the high pressure inside the film at a distance longer than
the radius of a dislocation D!, i.e. a gradual decay of this pressure beyond the range D, where the

dislocation will break this internal stress.

Now the superposition of the pressures from either side of interface at x is

x L-x

o, = agle’d + e D }. (9)

The total energy inside the sandwich between two neighboring interfaces I and II is expressed as

2
L1 x L-x oo 2L 2L L
J —osle D +e D 1%dx = —|l1-eD + —e |, (10)
027 22 D

where A is the elastic constant.
4 Optimum energy and size of alternative layers of films

Now we try to find the total optimum energy and optimum size of the eutectic composite system.
For simplicity, assume that the stress distribution on the two sides are nearly the same, so only the
distribution on one side is to be considered and only half of the energy in Eq. (7) is to be taken into
account. Adding the change in free energy (7) and double stress energy (10) together, one has the
total change in free energy per unit area of the double charge layer as follows:

: 20 2L L 1 (B_- B, + ,u)2
]_ (11)
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We have a more explicit expression:

E €p
€ = E(y)s'2—= y'QRye " —e*+y), v=-14+—,9y=L/D, (12)
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where y represents the breath of sandwich between two successive interfaces, and & represents the
mean energy density inside the sandwich whose optimum value can be obtained by the following condi-
tion

de
i 0, e (1 +2y) -2y% 7"+ v = 0. (13)
y

Then we have

(292 - (1 +2y)e ?]e” = f(y). (14)

Take y =0, 1, 2, 3, 4, from Eq. (14) we have f(y) = -1, 0.22, 0.99, 0.89, 0.58 respective-
ly. From these data and Eq.(12) it follows that ¥ must lie between O and 1. The solution of Eq.
(13) is given by the curve f(y) with y, as shown in Fig. 3. There are two possible solutions: one
is a smaller value y; corresponding to the maximum of the energy density, and the other is a larger
value y, corresponding to the minimum of the energy density. The former represents stable eutectics,
such as Zn-5Al1, Fe(y)-Fe;C, and the latter represents unstable eutectics.

The case of ¥ <0 and ¥ > 1 are not stable. The former repre- ) 4
sents a state in which the energy e, caused by the differences in

chemical potentials of two constituents is too small to overcome that W 2

(=]

by the lateral pressure due to the difference in electron densities

‘<"

A [
Lyl ¥,

that results in breaking down into macro-size blocks, as in the situ- _;
ation of pure crystals. The latter means that the effect of difference

in chemical potentials is so strong that the whole system becomes a Fig. 3 f(y)-vy

mixture, in which small inclusions disperse in main matrix. These

inclusions may be metastable solid solution, like phase precipitates Al in CuAl,, and precipitates in

NiC-WC solid solution. 3’ In steel it is Bainits structure.

Let it be noted that in stable eutectic state, the eutectic may still disperse into small inclusions

if the matrix is a homogeneous solution.

Hence there are two stable states. One is a eutectic sandwich structure and the other might be an
assembly consisting of very fine crystalline mixtures similar to Bainite formed in the later stage of cool-

ing of Austenite after eutectoid, or Leibnite after the eutectic transformation of phases in steel.

The fact that shell structure prevails in water mussels and clams reminds us of the mechanism of

the growth of shell structure. The bulk material might grow in alternative shells in eutectic structure.
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They first dissolve in the eutectic component and then reconstruct the alternative layers of the eutectic
structure .

A study of the mechanism of eutectic structure might be very helpful to designing new materials
of very high strength and tenacity, as in shell eutectic structure. The structure of the shells of clams
and their fabrication of pearls might give some clue to the solution. Eutectic may coexist in three
phases due to crystallines with small interfacial surface tension. If one can find out the prescription to
provide eutectic material, the growth and reconstruction of the bulk of shelling materials would be
readily brought to light.
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